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Artificial Intelligence Today

AI is going to transform industry and business as electricity did about a 
century ago 

(Andrew Ng, Jan. 2017)

Applications:
• Computer vision
• Robotics
• Healthcare
• Speech recognition
• Virtual assistants
• ...
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Computer Vision for Self-Driving Cars

He et al., Mask R-CNN, ICCV ’17, https://arxiv.org/abs/1703.06870
Video from: https://www.youtube.com/watch?v=OOT3UIXZztE 3
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Speech Recognition for Virtual Assistants

Amazon Alexa
Apple Siri Microsoft Cortana Google Assistant 
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But Is AI Really Smart? 
Should We Trust These Algorithms?
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Adversarial Glasses

• Attacks against DNNs for face recognition with carefully-fabricated eyeglass frames

• When worn by a 41-year-old white male (left image), the glasses mislead the deep
network into believing that the face belongs to the famous actress Milla Jovovich

Sharif et al., Accessorize to a crime: Real and stealthy 
attacks on state-of-the-art face recognition, ACM CCS 2016 6
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Adversarial Road Signs

Eykholt et al., Robust physical-world attacks on 
deep learning visual classification, CVPR 2018 7
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Audio Adversarial Examples

“without the dataset the article is useless”

“okay google browse to evil dot com”

Transcription by Mozilla DeepSpeechAudio

Carlini and Wagner, Audio adversarial examples: Targeted 
attacks on speech-to-text, DLS 2018

https://nicholas.carlini.com/code/audio_adversarial_examples/ 8
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How Do These Attacks Work?
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Evasion of Linear Classifiers

• Problem: how to evade a linear (trained) classifier?

Start 2007 with 
a bang!
Make WBFS YOUR 
PORTFOLIO’s
first winner of 
the year
...

start
bang
portfolio
winner
year
...
university
campus

1
1
1
1
1
...
0
0

+6 > 0, SPAM
(correctly classified)

f (x) = sign(wT x)

x
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PORTFOLIO’s
first winner of 
the year
... campus
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university
campus

0
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1
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0
1

+3 -4 < 0, HAM
(misclassified email)

f (x) = sign(wT x)
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Evasion of Nonlinear Classifiers

• What if the classifier is nonlinear?

• Decision functions can be arbitrarily complicated, with no clear relationship between
features (x) and classifier parameters (w)

11
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Detection of Malicious PDF Files
Srndic & Laskov, Detection of malicious PDF files based on hierarchical document structure, NDSS 2013

“The most aggressive evasion strategy we could conceive was successful for 
only 0.025% of malicious examples tested against a nonlinear SVM classifier 
with the RBF kernel [...].

Currently, we do not have a rigorous mathematical explanation for such a 
surprising robustness. Our intuition suggests that [...] the space of true features 
is “hidden behind” a complex nonlinear transformation which is 
mathematically hard to invert. 

[...] the same attack staged against the linear classifier [...] had a 50% success 
rate; hence, the robustness of the RBF classifier must be rooted in its nonlinear 
transformation”

12
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Evasion Attacks against Machine Learning at Test Time

• Main idea: to formalize the attack as an 
optimization problem

• Non-linear, constrained optimization
– Projected gradient descent: approximate

solution for smooth functions

• Gradients of g(x) can be analytically
computed in many cases
– SVMs, Neural networks

Biggio et al., ECML PKDD 2013

min
!"

𝑔(𝑥")

s. t. 𝑥 − 𝑥" ≤ 𝜀

13

𝑓 𝑥 = sign 𝑔(𝑥) = +
+1,malicious
−1, legitimate

𝑥

𝑥′
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An Example on Handwritten Digits

• Nonlinear SVM (RBF kernel) to discriminate between ‘3’ and ‘7’
• Features: gray-level pixel values (28 x 28 image = 784 features)

Few modifications are
enough to evade detection!

Before attack (3 vs 7)

5 10 15 20 25

5

10

15

20

25

After attack, g(x)=0

5 10 15 20 25

5

10

15

20

25

After attack
(misclassified as 7)

Biggio et al., ECML PKDD 2013 14
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Adversarial Examples against Deep Neural Networks

• Szegedy et al. (2014) 
independently developed 
gradient-based attacks 
against DNNs

• They were investigating 
model interpretability, trying 
to understand at which point 
a DNN prediction changes

• They found that the minimum 
perturbations required to trick 
DNNs were really small, even 
imperceptible to humans

Szegedy, Goodfellow et al., Intriguing Properties of NNs, ICLR 2014 15

+ε =

school bus (94%) ostrich (97%)

input image adversarial perturbation adversarial example
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Timeline of Learning Security

Adversarial M
L

2004-2005: pioneering work
Dalvi et al., KDD 2004
Lowd & Meek, KDD 2005

2013: Srndic & Laskov, NDSS

2013: Biggio et al., ECML-PKDD - demonstrated vulnerability of nonlinear algorithms
to gradient-based evasion attacks, also under limited knowledge
Main contributions:
1. gradient-based adversarial perturbations (against SVMs and neural nets)
2. projected gradient descent / iterative attack (also on discrete features from malware data)

transfer attack with surrogate/substitute model
3. maximum-confidence evasion (rather than minimum-distance evasion) 

Main contributions:
- minimum-distance evasion of linear classifiers
- notion of adversary-aware classifiers

2006-2010: Barreno, Nelson, 
Rubinstein, Joseph, Tygar
The Security of Machine Learning
(and references therein)

Main contributions:
- first consolidated view of the adversarial ML problem
- attack taxonomy
- exemplary attacks against some learning algorithms

2014: Szegedy et al., ICLR
Independent discovery of (gradient-

based) minimum-distance adversarial 
examples against deep nets; earlier 

implementation of adversarial training 

Security of DNNs

2016: Papernot et al., IEEE S&P
Framework for security evalution of 

deep nets

2017: Papernot et al., ASIACCS
Black-box evasion attacks with 

substitute models (breaks distillation 
with transfer attacks on a smoother 

surrogate classifier)

2017: Carlini & Wagner, IEEE S&P
Breaks again distillation with 

maximum-confidence evasion attacks 
(rather than using minimum-distance 

adversarial examples)

2016: Papernot et al., Euro S&P
Distillation defense (gradient masking)

Main contributions:
- evasion of linear PDF malware detectors
- claims nonlinear classifiers can be more secure

2014: Biggio et al., IEEE TKDE Main contributions:
- framework for security evaluation of learning algorithms
- attacker’s model in terms of goal, knowledge, capability

2017: Demontis et al., IEEE TDSC
Yes, Machine Learning Can Be 
More Secure! A Case Study on 
Android Malware Detection

Main contributions:
- Secure SVM against adversarial examples in malware 

detection

2017: Grosse et al., ESORICS
Adversarial examples for

malware detection

2018: Madry et al., ICLR
Improves the basic iterative attack from 

Kurakin et al. by adding noise before 
running the attack; first successful use of 
adversarial training to generalize across 

many attack algorithms

2014: Srndic & Laskov, IEEE S&P
used Biggio et al.’s ECML-PKDD ‘13 gradient-based evasion attack to demonstrate 
vulnerability of nonlinear PDF malware detectors

2006: Globerson & Roweis, ICML
2009: Kolcz et al., CEAS
2010: Biggio et al., IJMLC

Main contributions:
- evasion attacks against linear classifiers in spam filtering

Work on security evaluation of learning algorithms

Work on evasion attacks  (a.k.a. adversarial examples)

Pioneering work on adversarial machine learning

... in malware detection (PDF / Android)

Legend

1

2

3

4

1
2
3
4

2015: Goodfellow et al., ICLR
Maximin formulation of adversarial 
training, with adversarial examples 

generated iteratively in the inner loop

2016: Kurakin et al.
Basic iterative attack with projected 

gradient to generate adversarial examples

2 iterative attacks

Biggio and Roli, Wild Patterns: Ten Years 
After The Rise of Adversarial Machine 
Learning, Pattern Recognition, 2018
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Fast Minimum-Norm (FMN) Attacks (Pintor, Biggio et al., NeurIPS ‘21)

17

Biggio et al., 2013
Szegedy et al., 2014 
Goodfellow et al., 2015 (FGSM)
Papernot et al., 2015 (JSMA)
Carlini & Wagner, 2017 (CW)
Madry et al., 2017 (PGD)
...
Croce et al., FAB, AutoPGD ...
Rony et al., DDN, ALMA, ...
Pintor et al., 2021 (FMN)

Pintor et al., Fast minimum-norm adversarial attacks 
through  adaptive norm constraints, NeurIPS 2021

��! �� ��

��"#$

��"

��"#$
�� �� + ��, ��

, ��
< 0

(2) ��-step

��"#$��"

(1) ��-step

FMN

Fast convergence to good local optima

Works in different norms (ℓ! , ℓ" , ℓ# , ℓ$ )

Easy tuning /robust to hyperparameter choice
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Adversarial EXEmples: Practical Attacks on Machine Learning for Windows Malware Detection

18
Demetrio, Biggio, et al., Adversarial EXEmples, ACM TOPS 2021
Demetrio, Biggio, et al., Functionality-preserving ..., IEEE TIFS 2021 
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Black-box Attacks on EXE Malware
Functionality-preserving Black-box Optimization of Adversarial Windows Malware

Demetrio al., IEEE TIFS 2021 https://arxiv.org/pdf/2003.13526.pdf

• Our attack bypasses state-of-the-art 
machine learning-based detectors also with 
very small payload sizes

• Surprisingly, it also works against some 
commercial anti-malware solutions 
available from VirusTotal!

Detection rates of AV products from VirusTotal, including 
AVs in the Gartner’s leader quadrant. Our section-
injection attack evades detection with high probability.
We are in touch with some AV companies for responsible 
disclosure of such a vulnerability.

19
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Attacks against Machine Learning

Integrity Availability Privacy / Confidentiality

Test data Evasion (a.k.a. adversarial 
examples)

Sponge attacks Model extraction / stealing  
Model inversion (hill climbing)
Membership inference

Training data Backdoor/targeted poisoning (to 
allow subsequent intrusions) –
e.g., backdoors or neural trojans

Indiscriminate (DoS) 
poisoning (to maximize 
test error)

Sponge Poisoning

-

Attacker’s Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

Biggio & Roli, Wild Patterns, PR 2018 https://arxiv.org/abs/1712.03141

Misclassifications that do 
not compromise normal 
system operation

Misclassifications that 
compromise normal 
system operation

Attacker’s Goal

Attacker’s Capability

Querying strategies that reveal 
confidential information on the 
learning model or its users

20
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Indiscriminate (DoS) Poisoning Attacks
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• Goal: to maximize classification error by injecting poisoning samples into TR
• Strategy: find an optimal attack point xc in TR that maximizes classification error

xc

classification error = 0.039classification error = 0.022

Denial-of-Service Poisoning Attacks

xc

classification error as a function of xc

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012 22
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Poisoning is a Bilevel Optimization Problem

• Attacker’s objective
– to maximize generalization error on untainted data, w.r.t. poisoning point xc

• Poisoning problem against (linear) SVMs:

Loss estimated on validation data
(no attack points!)

Algorithm is trained on surrogate data
(including the attack point)

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012
Xiao, Biggio et al., Is feature selection secure against training data poisoning? ICML, 2015

Munoz-Gonzalez, Biggio et al., Towards poisoning of deep learning..., AISec 2017

max
%!

�� �� &'( , �� ��
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xc
(0) xc

Gradient-based Poisoning Attacks

• Gradient is not easy to compute
– The training point affects the classification function

• Trick:
– Replace the inner learning problem with its equilibrium (KKT) 

conditions
– This enables computing gradient in closed form

• Example for (kernelized) SVM
– similar derivation for Ridge, LASSO, Logistic Regression, etc.

24

xc
(0)

xc

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012
Xiao, Biggio, Roli et al., Is feature selection secure against training data poisoning? ICML, 2015

Demontis, Biggio et al., Why do Adversarial Attacks Transfer? USENIX 2019
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Experiments on MNIST digits
Single-point attack

• Linear SVM; 784 features; TR: 100; VAL: 500; TS: about 2000
– ‘0’ is the malicious (attacking) class
– ‘4’ is the legitimate (attacked) one

xc
(0) xc

25Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012
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Other Attacks
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Training data (poisoned)

Backdoored stop sign
(labeled as speedlimit)

Backdoor Poisoning Attacks

27

Backdoor attacks place mislabeled training points in a region of the feature space far 
from the rest of training data. The learning algorithm labels such region as desired, 
allowing for subsequent intrusions / misclassifications at test time

Training data (no poisoning)

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities 
in the machine learning model supply chain. NIPSW. MLCS, 2017
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Sponge Poisoning

• Attacks aimed at increasing energy consumption of DNN models deployed on 
embedded hardware systems 

Shumailov et al., Sponge Examples..., EuroSP 2021
Cinà, Biggio et al., Sponge Poisoning..., arXiv 2022 28
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Wild Patterns Reloaded!

29
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Membership Inference Attacks
Privacy Attacks (Shokri et al., IEEE Symp. SP 2017)

• Goal: to identify whether an input sample is part of the training set used to learn a deep 
neural network based on the observed prediction scores for each class

30
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AI/ML Protection against Evasion Attacks

What is the rule? The rule is protect yourself at all times
(from the movie “Million dollar baby”, 2004)
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Security Measures against Evasion Attacks

1. Robust optimization to model attacks 
during learning
– adversarial training / regularization

2. Rejection / detection of
adversarial examples

32

min
𝒘
∑$ max||𝜹9||'(

ℓ(𝑦$ , 𝑓𝒘 𝒙$ + 𝜹$ )

bounded perturbation!

1 0 1

1

0

1

SVM-RBF (higher rejection rate)

1 0 1

1

0

1

SVM-RBF (no reject)
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• Robust optimization (a.k.a. adversarial training)

• Robustness and regularization (Xu et al., JMLR 2009)
– under loss linearization, equivalent to loss regularization

Increasing Input Margin via Robust Optimization

min
𝒘

max
||𝜹9||: '(

∑$ ℓ 𝑦$ , 𝑓𝒘 𝒙$ + 𝜹$

bounded perturbation!

33

min
𝒘

∑𝒊 ℓ 𝑦$ , 𝑓𝒘 𝒙$ + 𝜖||𝛁𝒙ℓ$||+

dual norm of the perturbation

Demontis, Biggio et al., Yes, Machine Learning 
Can Be More Secure! ..., IEEE TDSC 2019
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Why Does Robust Optimization Work?

34Yu et al., Interpreting and Evaluating NN Robustness, IJCAI 2019

random perturbation adv. perturbation random perturbation adv. perturbation

Undefended model – Adversarial accuracy: 0.3% Defended model – Adversarial accuracy: 44.7%
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Detecting and Rejecting Adversarial Examples

blind-spot evasion
(not even required to 

mimic the target class)

rejection of adversarial examples through
enclosing of legitimate classes

35

• Adversarial examples tend to occur in blind spots
– Regions far from training data that are anyway assigned to  ‘legitimate’ classes
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Deep Neural Rejection against Adversarial Examples

Predicted outputs on known classes

cl
as

si
fie

r

g3

g2

g1

Threshold for detection of anomalous 
inputs, including adversarial examples

classifier with reject option, whose 
decision rule is: argmax(s1,...,sc,s0)

these classifiers try to predict the correct class 
from each given representation layerinput image

s1        ...      sc  s0

36
Sotgiu, Biggio et al., EURASIP JIS, 2020

Crecchi, Biggio et al., FADER: ..., Neurocomputing 2021
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Domain Knowledge Alleviates Adversarial Examples

image
Main classes

Logical 
constraints

Constraint loss
(can be thresholded)

Melacci, Biggio et al., IEEE TPAMI 202137
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Ineffective Defenses: Obfuscated Gradients

• Work by Carlini & Wagner (SP’ 17) and Athalye et al. (ICML ‘18) has shown that 
– some recently-proposed defenses rely on obfuscated / masked gradients...
– ... and they can be circumvented

38

g(𝑥)

𝑥’𝑥

Obfuscated 
gradients do not 
allow the 
correct 
execution of 
gradient-based 
attacks...

𝑥

g(𝑥)

𝑥’

... but substitute 
models and/or 
smoothing can 
correctly reveal 
meaningful 
input gradients!
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Detect and Avoid Flawed Evaluations

• Problem: formal evaluations 
do not scale, adversarial 
robustness evaluated 
mostly empirically, via 
gradient-based attacks

• Gradient-based attacks 
can fail: many flawed 
evaluations have been 
reported, with defenses 
easily broken by 
adjusting/fixing the attack 
algorithms

Pintor et al., Indicators of Attack Failure: Debugging and Improving 
Optimization of Adversarial Examples, arXiv 2021 39



http://pralab.diee.unica.it @biggiobattista

Detect and Avoid Flawed Evaluations

• Problem: formal evaluations do not scale, adversarial robustness evaluated mostly 
empirically, via gradient-based attacks

• Gradient-based attacks can fail: many flawed evaluations have been reported, with 
defenses easily broken by adjusting/fixing the attack algorithms

40
Pintor et al., Indicators of Attack Failure: Debugging and Improving 
Optimization of Adversarial Examples, arXiv 2021

Obfuscated Gradients

Implementation
problems
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Indicators of Attack Failure

Pintor et al., Indicators of Attack Failure: Debugging and Improving 
Optimization of Adversarial Examples, arXiv 2021

p1

p2p3

��

1
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1

10

A
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os

s

Iterations

Break-point angle Increasing loss

• Indicators of Failure (IoF) with corresponding mitigation strategies/protocol

41
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Experiments

O
riginal evaluation

58%

Robust Accuracy

36%

Fix im
plem

entation

6%

Change loss function

Distillation

O
riginal evaluation

94%

Robust Accuracy

0%

C
hange loss function

Ensemble
Diversity O

riginal evaluation

38%

Robust Accuracy

36% 9%

Fix im
plem

entation
Tune hyperparam

eters

Turning a 
Weakness into 
a Strength O

riginal evaluation

35%

Robust Accuracy

0%

Perform
 adaptive attack

k-Winners 
Take All

Pintor et al., Indicators of Attack Failure: Debugging and Improving 
Optimization of Adversarial Examples, arXiv 2021 42
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AI/ML Protection against Poisoning Attacks

What is the rule? The rule is protect yourself at all times
(from the movie “Million dollar baby”, 2004)
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Security Measures against DoS Poisoning

• Rationale: poisoning injects outlying training samples

• Two main strategies for countering this threat
1. Data sanitization: remove poisoning samples from training data

• Bagging for fighting poisoning attacks
• Reject-On-Negative-Impact (RONI) defense

2. Robust Learning: learning algorithms that are robust in the presence of poisoning samples

44Jagielski, Biggio et al., IEEE Symp. Security and Privacy, 2018
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Defending against Backdoor Poisoning Attacks

45

Fine Pruning
...

Gao et al., Backdoor Attacks and Countermeasures..., arXiv 2017
Cinà, Grosse, Biggio et al., Wild Patterns Reloaded:..., arXiv 2022

SentiNet (GradCAM)
ABS
NIC
...

Spectral Signature
...
Neural Cleanse
DeepInspect
...



Why Is AI Vulnerable?

46
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Why Is AI Vulnerable?

• Underlying assumption: past data is representative of 
future data (IID data)

• The success of modern AI is on tasks for which we 
collected enough representative training data

• We cannot build AI models for each task an agent 
is ever going to encounter, but there is a whole world 
out there where the IID assumption is violated

• Adversarial attacks point exactly at this lack of 
robustness which comes from IID specialization

Bernhard Schölkopf
Director, Max Planck Institute, Tuebingen, 

Germany

47
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What’s Next? MLOps: ML+Dev+Ops

• MLOps poses many industrial and research challenges
– Continuous data ingestion and labeling, model retraining/continuous updating, 

testing/validation, ...

• ... but also lack of debugging tools and systematic security testing to prevent attacks 
and/or improve robustness under adversarial/temporal drift!

48
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Our Vision: From MLOps to MLSecOps

• Goal: to empower MLOps with AI/ML Security, developing three main pillars
– AI/ML Protection: to build robust AI/ML and data sanitization procedures
– AI/ML Security Testing: to ensure proper testing and debugging of AI/ML models
– AI/ML Security Monitoring: to monitor AI/ML models in production (e.g., when deploying 

MLaaS) to timely detect ongoing attacks and block them 

49



Open Course on MLSec
https://github.com/unica-mlsec/mlsec

Software Tools
https://github.com/pralab
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Thanks!

If you know the enemyand know yourself,you neednot fear
theresult ofahundredbattles
Sun Tzu, The art of war, 500BC

Battista Biggio
battista.biggio@unica.it

@biggiobattista
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